The millipede-predation behavior of Promecognathus and Exceptional Cyanide Tolerance in Promecognathus and Metrius (Coleoptera: Carabidae)Abstract

Publication Type:Journal Article
Year of Publication:2020
Authors:B. P. Weary, Will K. W.
Journal:Annals of the Entomological Society of America
Volume:113
Issue:6
Pagination:473-480
Date Published:11/09/2020
ISSN:0013-8746
Keywords:Carabidae, chemical ecology, predator–prey relation, toxicology
Abstract:

Promecognathus (Carabidae) includes beetles that are specialist predators whose prey are polydesmidan millipedes that produce highly toxic hydrogen cyanide and benzaldehyde as a defense, and it is unknown how Promecognathus overcomes these chemicals. We observed Promecognathus laevissimus (Dejean, 1829) and P. crassus (LeConte, 1868) in the laboratory and found that they did not use behaviors to avoid the chemical defenses of their prey, Xystocheir dissecta (Wood, 1867) (Polydesmida: Xystodesmidae). We tested benzaldehyde as a feeding deterrent and found noticeable deterrence in all carabid beetles tested except Promecognathus species and Metrius contractus (Eschscholtz, 1829). A total of 18 carabid species were exposed to cyanide vapors in an enclosed chamber for 10 min to determine their relative tolerances. Promecognathus and M. contractus were unaffected by HCN exposures 7–15 times greater than quantities that knocked down all other species. Promecognathus laevissimus and M. contractus were then exposed to high levels of HCN for 2 h, and while individuals of M. contractus succumbed, all P. laevissimus were still moving after 2 h. It is possible that Promecognathus evolved a high tolerance to cyanide as part of a suite of adaptations related to millipede predation. However, we have no plausible explanation for the high tolerance in Metrius, for which there is no evidence of millipede feeding. This is the first documented case of predatory insects that exhibit high tolerance and potential resistance to cyanide. Possibly, these beetles have a detoxification mechanism that is not cyanide specific, as their tolerance level far exceeds any dose they would encounter in their natural habitat.

URL:https://academic.oup.com/aesa/advance-article/doi/10.1093/aesa/saaa023/5903281
DOI:10.1093/aesa/saaa023
Citation Key:964
Refereed Designation:Refereed
Scratchpads developed and conceived by (alphabetical): Ed Baker, Katherine Bouton Alice Heaton Dimitris Koureas, Laurence Livermore, Dave Roberts, Simon Rycroft, Ben Scott, Vince Smith